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We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with
two interaction sites each, and interacting with a Weeks-Chandler-Anderson site-site potential. We compute full
spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which
neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of
freedom, such as rotation and translation, affect the Lyapunov spectrum differently. We study this phenomenon
by systematically varying the molecular shape and the density. We define and evaluate ‘“‘rotation numbers”
measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite
trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time
correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories
is also studied in certain subspaces of the phase space associated with center-of-mass and orientational mo-

lecular motion.

PACS number(s): 61.25.Em, 05.45.+b, 02.70.Ns, 05.20.—y

L. INTRODUCTION

The chaotic molecular motion in fluids and (nonlinear)
solids has been studied in the past mainly in terms of corre-
lation functions or related power spectra of assorted dynami-
cal variables. There is, however, a more fundamental point of
view: The basic underlying dynamical processes are colli-
sions (interactions) between particles with convex potential
surfaces. As a consequence, the phase-space trajectory is
highly unstable, which is reflected in a very sensitive depen-
dence on initial conditions. This phenomenon is character-
ized in terms of the set of Lyapunov exponents
{N\},I=1,...,L, usually ordered from the largest to the
smallest. The largest exponent \; describes the time-
averaged logarithmic rate at which nearby phase-space tra-
jectories separate. The sums of exponents Ef»:l)\i describe
the expansion or contraction rates of /-dimensional phase-
space objects. Thus the Lyapunov exponents represent the
time-averaged local deformation rates in the neighborhood of
a phase-space trajectory specified by the time evolution of
specially selected perturbation vectors &(¢). From a practi-
cal point of view the precise orientation of the set of initial
vectors {&(0)} is not known, nor is it needed for the deter-
mination of the \;. This is discussed in more detail in Sec.
II. The total number L of exponents is equal to the dimen-
sionality of the phase space and the whole set of exponents is
referred to as the Lyapunov spectrum. For the evaluation of
all L exponents the simultaneous integration of L(L+1)
first-order differential equations is required. The method has
therefore been restricted to rather low-dimensional dynami-
cal systems in the past. The feasibility of such studies for
many-body systems has been demonstrated by Posch and
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Hoover [1,2] who investigated fluid systems with up to 100
atoms in two dimensions.

Lyapunov spectra of Hamiltonian systems in thermal
equilibrium exhibit a pronounced symmetry, which helps to
reduce the number of differential equations to L(L+2)/2:
for each positive exponent there exists another negative ex-
ponent with equal absolute magnitude. This is referred to as
Smale pairing [1] or conjugate pairing [3,4]. It is a conse-
quence of the symplectic nature of the equations of motion
[5], which means that the phase flow, viewed as a canonical
transformation of the phase space onto itself, leaves the dif-
ferential two-form E{-“fl dp;/\dq; invariant. Here the sum is
over all degrees of freedom and p; and ¢; denote all compo-
nents of particle momenta and positions, respectively. Due to
this pairing symmetry the calculation may be restricted to the
positive exponents, thus permitting the simulation of more
complex and larger systems. With the available computer
hardware systems with up to 400 degrees of freedom may be
simulated at present [6] by far exceeding the complexity one
usually encounters when studying dynamical systems with a
low-dimensional phase space [7].

For atomic fluids one finds that the shape of the Lyapunov
spectrum changes qualitatively if the density is isothermally
increased from that of a dense gas to solid densities [8] and
that the largest Lyapunov exponent A, exhibits a maximum
at the solid-fluid phase transition density [8,9]. From a simu-
lation of thermostated butane molecules one may further de-
duce that the largest contribution to \;, and therefore the
largest source for chaos, is due to the torsional motion
around the central CC bond. The other degrees of freedom
contribute mainly to the smaller exponents [10]. This conclu-
sion has been reached by observing the variations in the
Lyapunov spectrum of a Nosé-Hoover-thermostated mol-
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ecule, if various contributions to the molecular Hamiltonian
specifying different degrees of freedom are selectively
switched off. Considering these examples, we may expect
that also for molecular fluids the stretching and contraction
properties are very differently affected by translation and ro-
tation and that, as a consequence, the shape of the Lyapunov
spectra will strongly depend on the state of the system. To
clarify this point we report in this paper results of a molecu-
lar dynamics simulation study of a simple planar molecular
fluid in equilibrium consisting of N rigid homonuclear di-
atomic molecules with anisotropy d/o. Here d is the fixed
bond length separating the two interaction sites of a mol-
ecule, and o is an atomic-size parameter. d, or the related
moment of inertia, and the molecular number density n* are
two independent parameters with which the emphasis may
be conveniently shifted between translational and rotational
dynamics, at the same time varying the respective relaxation
times. We measure the associated changes in the (in)stability
properties of the phase-space trajectories.

In Sec. II we define our model fluid and indicate our
method of simulating the reference trajectory. In Sec. III we
briefly outline the methods for the evaluation of Lyapunov
spectra. We define so-called rotation spectra for the vectors
&, connecting neighboring trajectories in phase space [8]. It
turns out that it is useful to study also the projected motion
of these vectors in subspaces of the phase space such as the
respective configurational and momentum spaces for transla-
tional and rotational motion. To make contact with the more
traditional analysis of molecular dynamics in fluids, we also
evaluate correlation functions pertinent for these degrees of
freedom. In Sec. IV we summarize our results. They are
discussed further in Sec. V, where we speculate also about
possible interpretations of the Lyapunov spectra in terms of
suitably defined collective modes in dense fluids.

II. MODEL FLUID

Simulations were performed for a purely classical system
consisting of N= 18 rigid homonuclear diatomic molecules
in a two-dimensional square box of area (volume) V and
with periodic boundary conditions. The two interaction sites
of each molecule are separated by a rigid distance d along
the molecular axis and sites on different molecules separated
by r interact with a purely repulsive Weeks-Chandler-
Anderson potential

r<2q

, r=2"%g.

4e[(o/r)2—(o/r)8]+e,

s(n={, M

The total intermolecular potential energy ® is taken to be
pairwise additive. Reduced units are used throughout, for
which €, o, and the atomic mass m are unity. The equations
of motion for the 2N interaction sites were augmented with
constraint forces keeping the bond length d for each mol-
ecule fixed [11]:

(‘la:pa/m’
pi=fi+ulqgx—q), 2

p=f—u(q—q).

Here q, ,p, are the respective position and momentum vec-
tors of the two interaction sites of a molecule, = 1,2, and
f,=—V _,® is the force on site «. Furthermore,

(p2—p1)*m+(qr—q)-(F,— 1))
2(‘]2‘(11)2

3)

is the Lagrange multiplier for the holonomic constraint
(qy—q;)?—d?>=0 for this molecule. The initial conditions
were chosen such that the total center-of-mass velocity was
Zero.

For the evaluation of the Lyapunov exponents and the
ensuing discussion it is useful to represent the state of the
system by the 6 N-dimensional state vector
L()={x;.y:.X;.yism:» 7}, i=1,N, where x;,y; and x;,y;
are the center of mass coordinates and momenta, respec-
tively, of molecule i, and #%; is the angle the molecular axis
of i makes with some arbitrary direction. #; is the corre-
sponding angular velocity. For each molecule i these quan-
tities may be easily computed from the instantaneous posi-
tions and momenta of the interaction sites.

III. LYAPUNOYV EXPONENTS AND ROTATION NUMBERS

The equation of motion for the state vector I'(¢#) is con-
veniently written as an autonomous system of first-order dif-
ferential equations

['(1)=G(I(1)). 4)

Its solution defines a flow I'(¢r)=® ,(I'(0)) in phase space.
Let I'(0) be the initial condition of a reference trajectory,
I';(0) the initial point of a neighboring perturbed trajectory,
and let these two points be connected by a parametrized path
Co(s) with a perturbation parameter s such that
lim,_,oI;(0)=I'(0). At time ¢ these points will be mapped
by the flow onto the points I'(z)=®(I'(0)) and
I',(t)=®,(I';(0)) and the path Cy(s) into C,(s). Now we
can define a finite-length tangent vector at t=0,

5(0)=1im——————~rs<0)s_r(o),

s—0

®)

associated with an initial perturbation I'y(0)—TI'(0) of the
reference trajectory in phase space. As time goes on, this
perturbation develops into I'((#) —I'(¢) and the associated
tangent vector becomes

s—0

(6)

The change of the length of this vector during the time in-
terval ¢ determines the stability of the reference trajectory
due to the initial infinitesimal perturbation. & () may be
viewed as a vector comoving and corotating with the phase
flow in the immediate neighborhood of the phase point. It
specifies a direction in phase space that varies with time. The
equations of motion for & (¢) are obtained by linearizing the
original motion equations (4),

& ()=D((1))- 6 (1), )
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where D(I)=[(8/d")G(I")] is an LX L matrix and is re-
ferred to as the stability matrix. The formal solution of (7)
may be written as

6 (1)=M(1;6(0))- 6 (0), ®)

where the operator M is a time ordered exponential of
ID(T'(¢"))dt'. According to the multiplicative ergodic
theorem by Oseledec [13,14] the Lyapunov exponents

1
\,= lim—In|M(; & (0))u|

t—00

= limzitlnlu;-H(t;ﬁ(O))~u,‘ 9)

t—®©
exist for mixing systems and are independent of the initial
conditions. In this equation u; denote the L orthonormal
eigenvectors of the real and symmetric matrix
H(t; 6 (0))=M(t;6 (0))T™(s; 6 (0)), where a dagger
means transpose. They may be taken as the basis for an
arbitrary inital vector & (0), for which the long-time behav-
ior is ultimately determined by that vector component
6 (0) -u; with the largest associated Lyapunov exponent.

The classical algorithm for the calculation of the complete
spectrum of Lyapunov exponents due to Benettin et al.
[15,16]. and others [17,18,14] requires the simultaneous in-
tegration of the original reference system (4) and of L sets of
the linearized equations (7) for L initial tangent vectors
6,(0) taken to be orthonormal. However, due to the stretch-
ing and folding operations of the phase flow, these vectors
will not stay orthonormal for >0 but will be stretched and
rotated into the direction of the largest phase-space expan-
sion corresponding to the largest exponent and eventually
diverge. This is prevented by reorthonormalizing the vectors
after every few time steps. The Lyapunov exponents are de-
termined from the time-averaged contraction or expansion
factors for the vector norms. '

A conceptual refinement of this algorithm has been pro-
posed by Hoover et al. [12,1] and independently by Goldhir-
sch et al. [19].. It has again been reinvented since then [20].
In this method the vectors &; are constrained to remain or-
thonormal for all times >0 by the introduction of constrain-
ing forces added to the right-hand side of the linearized mo-
tion equations:

!
> Nb. (10)

I'=1

8(n=D((1)) 8~

The N, ; are time-dependent Lagrange multipliers and are

determined  from  the orthonormality conditions
(8- )=6yr:
6/-D-§ ifl'=1
Ny = 11
"lel-p-s+8l, D5 ifl'<L ()

The Lyapunov exponents are given by the time-averaged di-
agonal multipliers

N=(Ng(1)). (12)
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This algorithm is equivalent to the classical algorithm with
continuous reorthonormalization and yields solutions for the
tangent vectors () identical to the classical ones, if in the
latter case the vectors are reorthonormalized after every time
step. However, the Egs. (11), together with (arbitrary) initial
conditions may be considered as the defining equations for
the orthonormal vectors &,(¢). They emphasize another prop-
erty of tangent-space dynamics that has been virtually ig-
nored up to now [19,8], namely, the rotation of the orthonor-
mal tangent vectors.

We have seen that the solution of Egs. (11) constitutes an
orthonormal set of vectors that continuously change their
orientation in tangent space with instantaneous angular ve-
locities A®,(z)/At. The vectors are forced to remain or-
thogonal to each other through the force terms proportional
to the off-diagonal Lagrange multipliers in Eq. (9). If viewed
in phase space, these orthonormal vectors move with the
state point along the reference trajectory and simultaneously
reorient such that &; always turns toward the direction of
fastest phase-space expansion, &, into a perpendicular direc-
tion with the second largest growth, and so forth. As a mea-
sure for this unitary rotation we have computed an averaged
angular velocity for each vector &, defined by

21 cos [ Bi(1,)- B(1,+AD)]

=3

tn—l At

E 'A®l(t )I (13)

where A®(t,) is the angle by which the unit vector §; re-
orients during a time step Ar at time ¢t,=nAr and N, is the
number of time steps of the simulation. We refer to these
numbers as ‘“‘rotation numbers”’ and to their whole set as the
“rotation spectrum’ [8]. Thus w; is the time-averaged modu-
lus of the angular velocity for the reorienting vector §(¢) in
phase space.

We stress that, unlike the Lyapunov exponents, the rota-
tion numbers defined in (13) depend on the metric of the
phase space and of the coordinate system used. There is no
multiplicative ergodic theorem for these quantities, although
they are independent of the choice of the initial conditions.
In this respect they are on the same level of theoretical sig-
nificance as the instantaneous finite-time Lyapunov expo-
nents, which also depend on the choice of the coordinate
system [7]. This issue clearly needs further investigation. In
spite of these theoretical restrictions, the rotation numbers
still convey important information about the phase-space dy-
namics. For example, for isothermal scans through order-
disorder phase transitions the rotation numbers increase
monotonically with density, whereas the maximum
Lyapunov exponent exhibits a pronounced maximum at the
transition density [8,9]. The rotation numbers are also largest
for indices belonging to the smallest exponents believed to
be associated with the stability of collective modes in a fluid.
We therefore speculate that the rotation spectra may prove
useful for establishing a link between the linearized dynam-
ics in tangent space and more traditional descriptions of sys-
tems in terms of (collective) modes. Examples for rotation
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spectra are given in Sec. IV. Related numbers have been
defined by Ruelle [21] and applied to two-dimensional maps
by Lambert et al. [22].

It is instructive to view the dynamics of the & vectors not
only in the whole phase space but also in certain qualita-
tively different subspaces associated with special degrees of
freedom. Since the phase space is a product of the center-of-
mass configuration space Q, of the respective momentum
space P, of the angular orientation space () for the molecu-
lar axes, and of the associated angular momentum space
P, also the tangent space is decomposed into respective
subspaces TQ, TP, TQ), and TP . We consider projections
of the &; vectors onto TX € {TQ,TP,TQ,TPq}:

Ox, 1 =ANTX) 6. (14)

The projection operator A TX) may be represented as a di-
agonal matrix with elements &2, ,(TX) equal to unity if the
« axis of &; belongs to 7X and zero otherwise. We compute
the time-averaged squared lengths of these projected vectors

82, =(Bx.; 6x) (15)

and refer to them as ‘“‘mean-squared X components’ of ;.
Of course, for each / they add up to unity if summed over
TX. They are a measure for the probability of a vector §; of
pointing into the direction of tangent space belonging to the
subspace TX. They turn out to be very helpful for the inter-
pretation of our results. A related quantity cos’a®= 5}2 | has
been discussed recently by D’Alessendro and Tenenbaum
[23], who refer to a'® as a coherence angle. It represents an
effective angle between the subspace 7X and the maximum-
expansion subspace.

We have mentioned already that the constrained
orthonormal-vector method of Egs. (10)—(12) is conceptually
very useful. However, any numerical solution of these equa-
tions involves quite extensive vector-matrix operations.
Since the tangent vectors ;(¢) obtained in this way are iden-
tical to the vectors generated by the classical method with
continuous reorthonormalization, Egs. (10)—(12) do not offer
an improvement from a numerical point of view. For our
numerical work we have therefore used the classical method
of Benettin in combination with Gram-Schmidt reorthonor-
malization after every time step. To avoid the algebraic com-
plexity we employed a finite-difference variant of the classi-
cal algorithm: The tangent vectors in (5) and (6) were
approximated by finite offset vectors between two phase-
space trajectories corresponding to a finite s=0.0001. As
many sets of the original motion equations (4) as the re-
quired number of Lyapunov exponents were integrated for
the determination of the satellite trajectories and Gram-
Schmidt reorthonormalization was carried out after every
time step. A fourth-order Runge-Kutta algorithm with a re-
duced time step Az=0.001 was used for the integration. Ev-
ery few time steps the molecular bonds were rescaled to their
precise length to compensate for numerical inaccuracies. In
all runs the trajectories were followed for at least 400 time
units.
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TABLE 1. Simulation results for a density n*=0.4. d is the
molecular bond length and is given in units of o. n? the
anisotropy-dependent density, is defined in the text. The maximum
Lyapunov exponent \; and the Kolmogorov entropy Ay are given

in units of (e/mo?)"2.

d nd Ay ng
0.2 0.48 4.11 111.0
0.33 0.532 3.74 114.6
0.5 0.6 3.57 117.2
0.66 0.664 3.59 120.0
1.0 0.8 3.47 111.7

IV. RESULTS

The reduced molecular number density n*=Nag?/V was
chosen large enough to ensure sufficient coupling between
translational and rotational degrees of freedom. Two series of
simulation runs with n* equal to 0.4 and 0.5 were per-
formed. For a given n* the molecular shape was varied by
considering systems with different molecular bond length
d. The anisotropy parameter d/o was varied between 0.2
and 1.0 and the corresponding variation of the Lyapunov
spectrum was determined. Since n* does not account for the
molecular anisotropy, we characterize our model systems
also by an anisotropy-dependent density parameter
n‘=No(a+d)/V, which is, roughly speaking, the ratio of
the occupied volume to the total. n¢ becomes equal to n* for
isotropic particles. Some of our results for the maximum
Lyapunov exponent A\ and for the Kolmogorov entropy #;
are summarized in Table I for n*=0.4 and in Table II for
n*=0.5. Here the Kolmogorov entropy s x= E,Lizl)\ ; 1s given
by the sum of the non-negative exponents. For all these
simulations the kinetic energy per molecule was equal to 2,
2/3 for each translational and rotational degree of freedom.
We monitored this partition of the kinetic energy among the
translational and rotational degrees of freedom throughout
the simulation. We found that equipartition among these de-
grees of freedom holds to within 3% for the whole range of
densities, bond lengths, and temperatures.

The very different n® dependence of N\ from that of &,
already suggests that the Lyapunov spectrum is considerably
affected by the bond length. This may be verified from Fig.
1, in which all spectra with identical »* = 0.4 but different
d are displayed, and from the analogous Fig. 2 for
n*=0.5. Of course, each spectrum consists of discrete

TABLE II. Simulation results for a density n*=0.5. d is the
molecular bond length and is given in units of o. n?¢, the
anisotropy-dependent density, is defined in the text. The maximum
Lyapunov exponent \; and the Kolmogorov entropy %y are given

in units of (e/mo?)'2.

d n? W) hy
0.2 0.6 5.08 134.1
0.33 0.665 4.56 135.9
0.5 0.75 436 133.3
0.66 0.83 4.02 115.0
1.0 1.0 3.16 65.2
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FIG. 1. Lyapunov spectra for a planar fluid of 18 linear diatomic
molecules at a reduced density n*=0.4, for five different bond
lengths d/o equal to 0.2, 0.33, 0.5, 0.66, and 1.0. Only the positive
branch (54 exponents, of which 3 vanish) is shown. The Lyapunov
exponents are given in units of (e/mo?)?. As usual, the index [
merely numbers the exponents A; such that /=1 refers to the maxi-
mum exponent.

points only, which are located at the nodes of the connecting
lines.

The index [/ along the abscissa merely numbers the expo-
nents (or degrees of freedom), with /=1 for the maximum
exponent, 51 for the smallest positive exponent, and 108 for
the most negative exponent. For the construction of Figs. 1
and 2 only the positive branches (54 exponents) of the
Lyapunov spectra were calculated and displayed. Due to the
Smale-pairing symmetry for symplectic systems mentioned
in the Introduction, the negative branch is obtained by re-
versing the sign of the positive branch. Six of the exponents
must vanish due to the five constants of the motion—energy,
center of mass, and linear momentum — and the fact that
any perturbation in the direction of the phase flow adds an-
other vanishing exponent. Vanishing exponents and their as-
sociated phase-space directions have indices 52<</=<57.
However, for short bond lengths the exponent A 5, in Figs. 1
and 2 does not vanish exactly. This is an undesirable conse-
quence of the periodic rescaling of the molecular bonds, but

FIG. 2. Lyapunov spectra for a planar fluid of 18 linear diatomic
molecules at a reduced density n*=0.5, for five different bond
lengths d/o equal to 0.2, 0.33, 0.5, 0.66, and 1.0. Only the positive
branch (54 exponents, of which 3 vanish) is shown. The Lyapunov
exponents are given in units of (e/ma?)¥2. As usual, the index [
merely numbers the exponents \; such that /=1 refers to the maxi-
mum exponent.

180 T T T T T

A density=0.5 <
160 density=0.4 +

120

FIG. 3. Full rotation spectra (108 rotation numbers each) as
defined in Sec. III, for a planar fluid of 18 linear diatomic molecules
with a bond length d/o =1, for the densities n* equal to 0.4 (plus
signs) and 0.5 (diamonds). The rotation numbers are given in units
of (e/mo?)12. The index [ merely numbers the spectral points such
that 1 corresponds to the maximum Lyapunov exponent, 108 to the
minimum exponent.

does not affect the shape of the spectra.

For a few selected systems containing molecules with the
longest (d=o0) and the shortest bonds (d=0.20) we com-
puted also the full spectrum of 108 exponents together with
the respective rotation numbers and mean-squared X compo-
nents 5X2’ ;. For the longest molecule d=o, full rotation
spectra are depicted in Fig. 3 for the densities n*=0.4 and
0.5. Mean-squared X components are displayed in Fig. 4 for
n*=0.5, d=0o and in Fig. 5 for n*=0.5, d=0.20. These
results will be discussed further in Sec. V.

In order to relate these findings to more traditional de-
scriptions of the dynamics, we calculated also various time
correlation functions referring to translational and rotational

] 20 40 60 80 100 120

FIG. 4. Mean-squared X components 6,2 ; as a function of the
Lyapunov index / for a planar fluid of 18 linear diatomic molecules
with a density n*=0.4 and bond length d/o=1. [=1 corresponds
to the maximum Lyapunov exponent. The subspaces X are the
center-of-mass configurational subspace Q (diamonds), the center-
of-mass momentum subspace P (plus signs), the orientation-angle
subspace () (squares), and the angular velocity subspace Pg
(crosses).
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FIG. 5. Mean-squared X components 5;, as a function of the
Lyapunov index / for a planar fluid of 18 linear diatomic molecules
with a density n*=0.4 and bond length d/oc=0.2. =1 corre-
sponds to the maximum Lyapunov exponent. The subspaces X are
the center-of-mass configurational subspace @ (diamonds), the
center-of-mass momentum subspace P (plus signs), the orientation-
angle subspace () (squares), and the angular velocity subspace
P (crosses).

motion of our model system. The normalized velocity auto-
correlation functions for molecular center-of-mass motion,
Cp () ={(v(2)-v(0))/{v(0)-v(0)), for the systems with the
larger density n*=0.5 are shown in Fig. 6. Their time inte-
gral is related to the translational diffusion coefficient. Fur-
thermore, the reorientational dynamics of linear molecules is
usually discussed in terms of the correlation functions for the
spherical harmonics of rank [/ of the angles specifying the
orientation of the molecular axis. In three dimensions some
of these correlation functions may be accessible by experi-
ment, such as infrared absorption (I=1), Raman scattering
(I=2), and neutron scattering (a weighted sum of [>0
terms). For our planar model these rotational correlation
functions are written as

o
o

o
o

o
b

<v(0)v(t)>/<v(0)v(0)>

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 6. Normalized velocity autocorrelation functions for a sys-
tem of 18 linear diatomic molecules with a density n*=0.5 and
different bond lengths d/o varying between 0.2 and 1 as indicated.
The time is given in units of (ma?)2.

G
02 1 L 1 L 1 1 L 1 1
0 05 1 15 2 25 3 35 4 45 5
t
FIG. 7. Orientational correlation functions C(#)

=(P(cosO()) for a system of 18 linear diatomic molecules with
a density n*=0.5 and different bond lengths d/o varying between
0.2 and 1 as indicated. The time is given in units of (ma?)12,

Ci(1)=(P(cos[O(1)])), (16)

where O (¢) = 5(¢) — 1(0) is the angle the axis of a molecule
reorients during the time ¢ and P; denotes a Legendre
polynomial of rank . In Fig. 7 the functions
C (1) ={cos[®(n)]) are depicted for the case n*=0.5 and the
whole range of bond lengths. Similar results have been ob-
tained also for C,, but are not shown here.

V. DISCUSSION

The computation of L Lyapunov exponents requires the
simultaneous integration of L(L+1) first-order differential
equations. Thus the number of molecules of a system acces-
sible to present-day computation is much smaller than one is
used to for traditional simulations of dynamical properties
such as correlation functions or transport coefficients. For
that reason our system consists of only N=18 two-center
molecules in a plane and the simulation box has a typical
side length of 6 o (for n*=0.5). For such small systems it is
difficult to distinguish between fluid and solid phases, al-
though already systems of only two disks exhibit a first-order
phase transition [24]. Nevertheless, we shall use these ex-
pressions to convey the general idea.

Before entering the discussion we stress again that six of
the Lyapunov exponents vanish for reasons given above.
They are located in the middle of the spectrum 52=</<57
and the associated phase-space directions belong to the cen-
tral manifold. Since Gram-Schmidt reorthonormalization has
no ordering effect on the directions of their & vectors, the
respective rotation numbers in Fig. 3 and the squared X com-
ponents in Figs. 4 and 5 have no meaning for 52</<57. We
have nevertheless included these points in the figures to draw
attention to this peculiarity.

An inspection of the center-of-mass velocity autocorrela-
tion functions in Fig. 6 reveals that backscattering, typical
for a dense fluid or solid, occurs only for the largest bond
length. For this system C,; in Fig. 7 does not decay and the
orientation of the molecules persists for a long time. We
conclude that this state is a solid, whereas all other systems
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are fluids. This is also reflected in the shape of the Lyapunov
spectra, which for d=1.0 and n*=0.5 in Fig. 2 is very simi-
lar to that of a two-dimensional solid formed with isotropic
particles [2]. Also the empirical power law

el 5o

for 1=I/=<L/2—2 works reasonably well with an exponent
B=3/2 [2]. A is the maximum exponent. As expected, the
shape of all other spectra conforms closely to that of atomic
fluids [2], but a representation in terms of such a power law
is not appropriate.

The maximum Lyapunov exponent \; describes the time
evolution of the small perturbation, which grows fastest in
phase space. It is a local quantity in the sense that it depends
basically on the fastest dynamical events taking place in the
system, namely, collisions, for which the velocities and an-
gular velocities change sign. It is a reasonable assumption
that the fastest phase-space growth takes place in the linear
and angular momentum subspaces. The mean-squared X
components 5)(2,1 introduced in Sec. III support this view.
Simulations for atomic systems have revealed that &, is lo-
cated almost fully in the momentum related subspace TP of
tangent space. For the linear molecules studied here the
angular-momentum related subspace TP of tangent space
turns out to be the most important. Figure 4 shows that on
the average 69% of the squared length of &; for the elon-
gated molecular case (d=1) is contributed by TP . This
number even rises to 96% for the more freely rotating case in
Fig. 5 (d=0.2). We conclude that the main reason for the
instability of the phase-space trajectory is due to the anisot-
ropy of the pair potential and it is mostly accumulated in the
angular-momentum subspace.

The situation changes completely when we consider &,
vectors for />1 pointing into less-violently expanding or
even compressing phase-space directions. Figures 4 and 5
reveal that the linear-momentum subspace becomes domi-
nant for, say, 20=</=351, still associated with positive expo-
nents. In this range the prominent contributions to the
Lyapunov spectra comes from translational modes, which
one is tempted to associate with generalized ‘“hydrodynami-
cal” modes with small but finite wave vectors. An approxi-
mate representation of these translation-dominated exponents
in terms of the power law (17) leads to exponents 8<1
similar to that of atomic fluids [2]. It follows that the positive
curvature of the Lyapunov spectra in Figs. 1 and 2 for the
most positive exponents (small /) is essentially due to con-
tributions from rotational degrees of freedom, which make
themselves felt more distinctly for small d associated also
with small moments of inertia.

It is interesting to note that the stable phase-space direc-
tions corresponding to the negative Lyapunov exponents are
dominated by the configurational subspace Q and, to a lesser
extent, by the orientation-angle subspace  (Fig. 4). The
significance of this is not clear to us.

That the maximum exponents of Figs. 1 and 2 increase
with density n* for fixed d and constant temperature is eas-
ily explained by the increase of the collision frequency. The
relative maximum exhibited by the positive exponents of
Fig. 2 as a function of the bond length is less obvious, since

B
(17)

an increase of d for constant n* also increases the collision
rate. This maximum is a consequence of the phase transition
eventually leading to a solid for d=1. In the less-dense case
of Fig. 1 this maximum is expected to occur for bond lengths
slightly larger than o. Similar maxima for A; as a function
of density have been observed previously for fluid-to-solid
phase transitions in atomic-particle systems [8].

The rotation numbers measure the average speed of rota-
tion of the & vectors in phase space. From simple arguments
involving the time-reversal invariance of the original motion
equations (4) and of their linearized version (7) we expect
that the rotation spectra for symplectic systems are symmet-
ric such that ;= w; ;,-;. This symmetry was observed for
atomic systems [8] and is also apparent in Fig. 3 for the
linear-molecule case with d=1. The theoretical significance
of these numbers is still controversial. Also the N depen-
dence of these numbers needs to be investigated.

The Kolmogorov entropy Ay is a global measure of the
rate with which information is generated by the dynamics
and hence of the disorder in such an equilibrium system. Our
numerical results tabulated in Tables I and II confirm the
general picture outlined above. For n*=0.5 this parameter
varies only very little with the molecular anisotropy as long
as the system remains fluid (Table II). It starts to decrease,
when the phase transition is approached, and becomes sig-
nificantly smaller for the solid. This transition takes place
near an anisotropy-dependent density n¢=0.8. For the lower
density n*=0.4 a similar transition occurs near n%=0.8, al-
though d must be increased beyond 1 for a solid to be ob-
served. This ‘“‘transition density” agrees with the phase-
transition density of an isotropic-particle system, at which
the maximum Lyapunov exponent reaches a maximum [8,9].

VI. CONCLUSION

This work is an attempt to survey the (in)stability proper-
ties of phase-space trajectories for systems of anisotropic
molecules. A detailed analysis of the Lyapunov spectra as a
function of density and molecular anisotropy makes it pos-
sible to distinguish, at least qualitatively, the contributions
from the center-of-mass motion and of molecular reorienta-
tion. We find that the major contributions to the instability of
the phase-space trajectory come from the rotational degrees
of freedom and, in particular, from the angular-momentum
variables. Translational center-of-mass motion is much less
destabilizing. Although, for practical reasons, the systems
contain only a few molecules, the influence of the fluid-solid
phase transition on the Lyapunov instability and the Kolmog-
orov entropy is clearly seen. One might speculate that an
even more detailed analysis of the dynamics of the tangent
vectors in the respective subspaces spanned by the center-of-
mass coordinates, the corresponding momenta, the orienta-
tion angles, and the angular velocities may lead to an inter-
pretation in terms of collective modes in many-body
systems. We are still far away from this goal, but it is hoped
that recent progress in the methodology of computing
Lyapunov spectra for systems of hard core particles [25,26,9]
will also be useful for the understanding of anisotropic mo-
lecular systems.
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